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Abstract

Linear quadratic Gaussian control is a technique that uses Kalman Jiltering to estima!e a..state
vector used for input into a control calculation. A control correction is calculated by mmtml_ng a
quadratic cost function that is dependent on both the state vector and the control amount. Different
penalties, chosen by the designer, are assessed by the controller as the state vector and control amount
vary from given optimal values. With this feature controllers can be designed to force the phase and
frequency d_fferences between two standards to zero either more or less aggressively depending on the
application. Data will be used to show how using different parameters in the cost function analysis
affects the steering and the stability of the frequency standards.

INTRODUCTION

The steering of frequency standards (atomic clocks) is a very important procedure in the timing
community. Steering is used to synchronize remote clocks using very accurate time transfer
methods such as two-way time transfer and the Global Positioning System. Also in time scale
applications a standard is steered to a paper, or calculated, clock in order to give the time
scale a physically realizable output. This paper will discuss how the linear quadratic Gaussian
(LOG) technique applies to the designing of control systems to steer frequency standards.

In any real world application, a control system must deal with some amount of uncertainty,
whether it comes in the form of sensor noise, process modeling error, or any other noise

sources. The LOG technique is used for designing optimal control systems for uncertain

physical processes. An important feature of this technique is that the stability of .the control
system is assured if system parameters have the properties of observability and controllability.
Kalman filtering is used in order to estimate the actual state variables from measurements
made of the stochastic system.

TWO-STATE LQG THEORY FOR FREQUENCY STANDARDS

In the LQG theory[ l,_l the state equation is assumed to be g!ven as a linear function of a'
state vector and a control vector:

x(k+l)=_x(k)+Bu(k)+w(k), (1)
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where

IxlCk)
x(k) = state vector = [xn(k) '

=l(k) is the phase difference, and _(k) is the fractional frequency difference, between
the reference and the steered standard,

u(k) = control vector which is a scalar in this case corresponding to the fractional
frequency change of the synthesizer controlling the steered standard,

,It ffi transition matrix = [1 _1, T is the time interval between measurements,

w(k) = white noise characterized by covariance @t,

[ ½_ + 2h__ 2+ i_h_2_ _2h_2_Qt
_r2h_2_ 2_2h__ r , and the h's are calculated from the two-sampleI

(Allan) variance of the comparison between two standards[4_l.

The noisy measurement z(k) is related to the state vector by

where

z(k)=H.,,(k)+v(k) (2)

z(k) ffi measurement, in our case a scalar phase difference,

H = connection matrix ffi I 1 0 l, and

v(k) ffi white noise characterized by covariance Rt ffi measurement noise.

The linear state equation (1) is an approximation to the state modeling equation that includes
higher order terms. In order to help give the linear approximation validity, the control vector
u(k) is chosen such that the quadratic cost function

J = E[_(k)rw_(k) + U(k)TW,u(k)] (3)
k

is minimized.

wq and wn are matrices that are chosen by the designer in order to set the relative penalties
assessed to the state vector estiv_ate t(k) and control vector u(k) as they vary from zero. In
general, if Wn is large compared to WQ, the penalty is large for the system attempting to
drive the state vector toward zero too rapidly. Conversely, if WQ is large compared to Wn,
the system faces a smaller penalty for large control effort and the system is driven toward zero
more quickly.

Due to the noisy measurement of x(k), we are faced with a compound problem of optimal
control and estimation. A very useful theorem from control theory known as the separation
principle allows us to solve the optimal control and the estimation problem independently.
Kalman filtering is the technique used to estimate the true state x(k) from the noise. The
Kalman filter is calculated as usuall31 with the exception that the update estimate must now
include control terms:

_i(k+ 1) = O_(k) + Bu(k) + Ka[z(k + 1) - H(_i(k) + Bu(k))] (4)

258



where 1% is the Kalman filter gain, i(k) is the state estimation, and B = J_l for the two-state
model with a frequency synthesizer as the control mechanism. The optimal control for the

given cost equation is

u(k)= - oi(k) (5)

where

Go = (BrI_o B + Wa) -xBTI_o_I' (s)

and K0 is a solution to the steady state Ricatti equation

_0 = ql_Tl_ _I_ + WQ -- qI_TI_B(BTI_B + WR)-IBTI_00. CT)

This gives us a statistically optimal control u(/) for the given cost function with the designer
specified parameters Wq and Wa. Now that the control is optimized, we need to be concerned
with the stability of the control design. Stability is assured if the pair (W_, O) are observable,
the pair (O, B) are controllable, the Kalman filter is stable, and the model is reasonably good
(see [2]). Controllability is the ability to steer the system from an initial state to another state
in a finite amount of time, and observability is the ability to determine the state at any time

from a finite number of measurements.

SIMULATIONS

Actual data measured from frequency standards at the United States Naval Observatory (USNO)
were used in the simulations. An LQG control was applied to the data as if one of the standards

frequency was being adjusted by a frequency synthesizer. Thus, the only assumption in the
simulations is that the synthesizer works ideally.

The hydrogen maser NAV8 was chosen to be steered to the USNO Meant 61. The Mean is

a paper clock that is calculated using an ensemble of hydrogen masers and cesium frequency
standards. Maser NAV8 has excellent short-term stability, but due to the poor environment

that it was in during the data collection, its long-term stability suffered. One of the best
performing standards at USNO is maser NAV4. Figure 1 shows the performance differences
between NAV8 and the Mean versus NAV4. As can be seen, we face an interesting problem

of steering maser NAV8 to the Mean in phase and frequency while attempting to preserve the
short-term stability of the maser and gain the long-term stability of the USNO Mean. The
phase difference between NAV8 and the Mean is given in Figure 2. In order to minimize
initial offsets, a frequency offset was removed from the data, and a constant was subtracted out

giving the initial phase difference point to be near zero.

1.001 01 which givesIn trial l we set Wn=10 s andWQ= 0 .001,

_o = I 6.502?7 x 10-5 .57714 [

after solving equations (5) and (6). Figure 3 shows the phase difference between the Mean
and NAV8 after steering NAV8 using the above solution. The phase difference is kept very
small with the difference having a standard deviation of 140 picoseconds.
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1.001 0
In trial 2 we set Wn = 10TM and WQ -- i0 .001 which gives

(_0 = I 3.3185 x 10-a .014976 I

after solving equations (5) and (6). Figure 4 shows the phase difference between the Mean
and NAV8 after steering NAV8 using the trial 2 parameters. The phase differences after the
initial settling have a standard deviation of 691 picoseconds.

A plot of the two-sample deviation of NAV4 versus the steered NAV8 for both trial 1 and trail

2 parameters is shown in Figure 5. This plot shows that the short-term stability 0f the maser
in trial1 has been perturbed by the fairly aggressive steering. While for trial 2, the stability
exhibits the short-term stability of the maser and excellent performance in the long term.

Another application of the LQG technique is the steering of remote clocks to UTC (USNO)
via GPS. Figure 6 shows data obtained between a keyed GPS receiver and Hewlett-Packard
HP5071 cesium standard #249. The initial data had 50 nanosecond phase and 4.0 x 10 -14
frequency offsets. Also shown in Figure 6 is the phase difference after a simulation run with
the LQG control using the parameters of trial 1. We assume that there are two remote clocks
being compared by a noisy GPS measurement system. The stability plot in Figure 7 shows how

the cesium performed during the steers compared to a hydrogen maser after the initial settling
of the controlled system. The solid line on the plot shows the performance specification for
the 5071 cesium. The slightly worse stability near 10 hours is most likely due to modelling
errors incurred from assuming whiteness of the GPS data.

The parameters chosen for the LQG depend on the systems being used, the desired outcome,
and the individual designer. This can be seen in the differences between the results in trial

1 and 2. In trial 1 the short-term stability is sacrificed slightly for a tight control in the
differences between the standards. The stability is still good, but if this does not meet the
frequency stability needs for a system then the parameters of trial 2 could be used, or any
other parameter set that gives the desired results as determined through simulation.

EXPERIMENTAL RESULTS
F

One of the great concerns in designing a controller is whether or not it will be stable and

robust. This was tested by offsetting an external synthesizer, called an Auxiliary Output
Generator manufactured by Sigma Tau Standards Corporation, driven by maser NAV2. The
phase offset made was approximately 8 milliseconds compared to maser NAV4. Figure 8 shows
how the controller with parameters given in trial 1 of the simulations reacted to this phase step
that was nearly 7 orders of magnitude greater than would be expected in practice. The system
remained stable and brought the signals within 300 picoseconds in approximately 6 days.

Figure 9 shows experimental data of maser NAV2 being steered to the USNO Master Clock
using an Auxiliary Output Generator that received its input from a distribution amplifier driven
by NAV2. The several hundred picosecond humps in the data are caused by temperature
changes in the testing lab where the 5 MHz distribution amplifier with a poor temperature
coefficient resides. Temperature control of the lab was poor during the installation of a back-up
air conditioning system.
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CONCLUSION

The LQG design philosophy is a robust, statistically optimal method for steering frequency
standards. Simulations can be run without undue difficulty in order for the designer to
characterize how different parameters will affect system responses. This technique could also
be used to steer one standard very tightly to another, thus creating an independent back-up that

is in phase and on frequency with its reference. Testing is now under way for implementing
the LQG technique to synchronize remote systems using the Global Positioning System and

two-way satellite time transfer methods.
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Questions and Answers

ALBERT KIRK (JPL): I have actually three questions. The first one, what are the

temperature variations in your laboratory?

PAUL KOPPANG (USNO): They were approximately five to six degrees C.

ALBERT KIRK (JPL): I see. The second question is: What is the smallest step you can

use on your synthesizer to correct the frequency?

PAUL KOPPANG (USNO): 10 -19

ALBERT KIRK (JPL): The final question is: How do you determine, or how does your

system determine, the loop time constant for each maser in response to - you know, to steer

the maser to some average that you mentioned here?

PAUL KOPPANG (USNO): That's done by the Kalman filtering; it would steer to a Kalman

filter value.

ALBERT KIRK (JPL): Can you select that, then, for each particular maser, depending on

its characteristics?

PAUL KOPPANG (USNO): Yes.
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